metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Simon J. Hibble,* Sharon G. Eversfield and Ann M. Chippindale

Department of Chemistry, University of Reading, Whiteknights, Reading, Berks RG6 6AD, England

Correspondence e-mail: s.j.hibble@reading.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Mo–O) = 0.003 Å Disorder in solvent or counterion R factor = 0.031 wR factor = 0.028 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraethylammonium aquatetrachlorooxomolybdate(V), [Et₄N][MoOCl₄(H₂O)]

The title compound contains $[MoOCl_4(H_2O)]^-$ distorted octahedral anions with a short Mo–O bond of length 1.641 (3) Å *trans* to the H₂O group. These units are linked by hydrogen bonds between the H₂O group and chlorines of neighbouring anions to form infinite chains. Charge balance is achieved by $[Et_4N]^+$ cations which exhibit twofold disorder.

Received 10 June 2002 Accepted 18 June 2002 Online 29 June 2002

Comment

As part of our continuing work on the use of chemical excision to obtain information on the structural units present in amorphous MoS_3 (Hibble *et al.*, 2001), we have characterized the products formed on reaction of amorphous MoS_3 with concentrated hydrochloric acid, followed by precipitation in the presence of the tetraethylammonium cation. Other workers previously identified, from IR data, one product of this reaction as the complex ion $[Mo_3S_7Cl_6]^{2-}$ (Weber *et al.*, 1995). In our reaction, we also found this ion present in the orange–brown solid $[Et_4N][H_9O_4][Mo_3S_7Cl_6]$, as confirmed by single-crystal X-ray diffraction. After partial solvent evaporation, a second crop of crystals was formed comprising further $[Et_4N][H_9O_4][Mo_3S_7Cl_6]$ and the bright-green title product, $[Et_4N][MoOCl_4(H_2O)]$, (I).

The crystal structure of $[Et_4N][MoOCl_4(H_2O)]$ contains $[MoOCl_4(H_2O)]^-$ anions, which deviate only slightly from $C_{4\nu}$ (4*m*) symmetry, charge balanced by tetrahedral $[Et_4N]^+$ cations, which are disordered over two positions related by a mirror plane through N1. The Mo1-O1 bond is very short, consistent with it having multiple-bond character. We associate this molybdenum-oxo group with the observed intense IR stretching vibration at 992 cm⁻¹. An OH₂ group is bonded trans to O1, leading to a long Mo1-O2 bond. The presence of hydrogen is confirmed by its location in difference Fourier maps and observation of vibrations in the IR spectrum at 3458 and 1612 cm⁻¹ consistent with O-H stretching and OH₂ bending modes, respectively. There are two crystallographically distinct Cl atoms completing the coordination sphere around Mo1. The $[MoOCl_4(H_2O)]^-$ anions are linked together through O2H···Cl1 hydrogen bonds to form infinite

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

a

C <

Figure 1

Local coordination of atoms in $[Et_4N][MoOCl_4(H_2O)]$ (50% probability displacement ellipsoids). Only one of the two symmetry-related possibilities for the disordered $[Et_4N]^+$ cation is shown. [Symmetry codes: (i) x, 3/2-y, z; (ii) x, 1/2-y, z.]

chains along the *a* axis, slightly weakening and lengthening the Mo1-Cl1 bond compared to the Mo1-Cl2 bond.

The structure of the aquatetrachlorooxomolybdate(V) anion, $[MoOCl_4(H_2O)]^-$, has been reported previously, occurring as the sole anion in a number of compounds. It occurs as isolated units [in (azonia-18-crown-6) monohydrate clathrate aquaoxotetrachloromolybdate(V) (Atwood et al., 1996) and tetraphenylarsonium aquatetrachlorooxomolybdate(V) (Garner *et al.*, 1977)], in pairs linked by $O-H \cdots Cl$ bonds [in (18-crown-6) hydroxonium clathrate aquatetrachlorooxomolybdate(V) (Atwood et al., 1996), 3,5-di-tertbutyl-1,2-oxathiolium aquatetrachlorooxomolybdate(V) (Cindric et al., 1996) and (12-crown-4) monohydrate oxonium monohydrate oxonium aquatetrachlorooxomolybdate(V) (Sergienko, Ilyukhin et al., 1991)], and in chains linked by O- $H \cdots O$ bonds [in (15-crown-5) oxonium monohydrate clathrate aquatetrachlorooxomolybdate(V) (Junk & Atwood, 1998) and bis(ethylenedithio)tetrathiafulvalene aquatetrachlorooxomolybdenum(V) (Kepert et al., 1997)], as well as in chains linked by $O-H \cdots Cl$ bonds similar to those observed here [in (18-crown-6) hydroxonium aquatetrachlorooxomolybdate(V) (Sergienko, Minacheva et al., 1991)].

Experimental

Amorphous MoS_3 was prepared from a solution of 1.0 g of $(NH_4)_2MoS_4$ in water (30 ml), degassed with nitrogen, which was treated with 12 M HCl (2 ml) whilst stirring (Müller *et al.*, 1993;

Linking of $[MoOCl_4(H_2O)]^-$ units via $O-H\cdots Cl$ hydrogen bonds to form infinite chains along the *a* axis.

Weber et al., 1995). The dark-brown precipitate was filtered off and washed several times with H₂O, CH₃OH, CS₂ (for removal of sulfur), and Et₂O, in turn, and dried in vacuo. Single crystals of (I) were obtained as follows: amorphous MoS_3 (0.65 g) was suspended in 12 M HCl (35 ml). The reaction mixture was refluxed under N₂ for 1 h and gravity filtered whilst still hot. Et₄NCl (0.5 g) was added to the yellow-green filtrate and the solution placed in the freezer at 253 K for 10 d, after which time a small amount of an orange-brown solid had precipitated. The solution was concentrated by slow evaporation to approximately 90% of the original volume and, after cooling, it was returned to the freezer for a further 14 d. Approximately equal quantities of the orange-brown plate-shaped crystals of [Et₄N][H₉O₄][Mo₃S₇Cl₆] and bright-green needle-like crystals of (I) were isolated and easily separated. Single-crystal X-ray diffraction confirmed their compositions and structures. IR data were also recorded from KBr discs.

Crystal data

$(C_8H_{20}N)[MoOCl_4(H_2O)]$	Mo $K\alpha$ radiation
$M_r = 402.01$	Cell parameters from 1886
Orthorhombic, Pnma	reflections
a = 10.9913 (3) Å	$\theta = 5.1-27.5^{\circ}$
b = 12.6073 (5) Å	$\mu = 1.48 \text{ mm}^{-1}$
c = 11.4222 (3) Å	T = 293 (2) K
$V = 1582.78 \text{ Å}^3$	Block, bright green
Z = 4	$0.15 \times 0.15 \times 0.15 \text{ mm}$
$D_r = 1.687 \text{ Mg m}^{-3}$	

Data collection

Nonius KappaCCD diffractometer $2\theta/\omega$ scans Absorption correction: multi-scan (*DENZO SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.801, T_{max} = 0.801$ 10 054 measured reflections

Refinement

Refinement on F R = 0.031 wR = 0.028 S = 1.151402 reflections 100 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

2.3827 (9)	N1-C5	1.530 (6)
2.3654 (9)	N1-C6	1.524 (6)
1.641 (3)	C1-C5	1.553 (4)
2.351 (3)	C1-C6	1.556 (4)
0.86 (3)	C2-C3	1.559 (4)
1.534 (6)	C2-C4	1.561 (4)
1.537 (6)		
87.41 (4)	Cl2-Mo1-O1	97.75 (9)
163.75 (4)	Cl1-Mo1-O2	82.60 (7)
89.44 (3)	Cl2-Mo1-O2	81.19 (7)
89.15 (5)	O1-Mo1-O2	178.5 (1)
98.47 (9)		
	$\begin{array}{c} 2.3827\ (9)\\ 2.3654\ (9)\\ 1.641\ (3)\\ 2.351\ (3)\\ 0.86\ (3)\\ 1.534\ (6)\\ 1.537\ (6)\\ 87.41\ (4)\\ 163.75\ (4)\\ 89.44\ (3)\\ 89.15\ (5)\\ 98.47\ (9) \end{array}$	$\begin{array}{ccccccc} 2.3827 & (9) & N1-C5 \\ 2.3654 & (9) & N1-C6 \\ 1.641 & (3) & C1-C5 \\ 2.351 & (3) & C1-C6 \\ 0.86 & (3) & C2-C3 \\ 1.534 & (6) & C2-C4 \\ 1.537 & (6) \\ \hline \\ 87.41 & (4) & C12-M01-O1 \\ 163.75 & (4) & C11-M01-O2 \\ 89.44 & (3) & C12-M01-O2 \\ 89.45 & (5) & O1-M01-O2 \\ 98.47 & (9) \\ \end{array}$

1886 independent reflections

 $R_{\rm int}=0.022$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -14 \rightarrow 14$

 $k = -16 \rightarrow 16$

 $l = -14 \rightarrow 14$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

1402 reflections with $I > 3\sigma(I)$

Weighting scheme: Chebychev

0.213, 0.0203 and -0.0593

polynomial with 3 parameters

(Carruthers & Watkin, 1979),

Symmetry code: (i) $x, \frac{3}{2} - y, z$.

Table 2

Hydrogen-bonding geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H1\cdots Cl1^i$	0.86 (3)	2.61 (3)	3.332 (3)	142 (3)
Symmetry code: (i)	$x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} - z$			

The C, N and H atoms of the amine cation and the H atom of the water molecule were located in difference Fourier maps. The fractional coordinates of the water H atom were refined with the isotropic

displacement parameter fixed at 0.05 Å². The $[Et_4N]^+$ cation was modelled as disordered over two symmetry-related sites. The H atoms of the amine cation were placed geometrically during the final refinement procedure and constrained to ride on their parent C atoms, with U_{iso} fixed at 0.05 Å².

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO SCALEPACK*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1996); molecular graphics: *ATOMS* (Shape Software, 1998); software used to prepare material for publication: *CRYSTALS*.

The authors thank the EPSRC for funding for SGE.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Atwood, J. L., Bott, S. G., Junk, P. C. & May, M. T. (1996). J. Coord. Chem. 37, 89–105.
- Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
- Cindric, M., Matkovic-Calogovic, D. & Kamenar, B. (1996). *Inorg. Chim. Acta*, **248**, 103–106.
- Garner, C. D., Hill, L. H., Mabbs, F. E., McFadden, D. L. & McPhail, A. T. (1977). J. Chem. Soc. Dalton Trans. pp. 1202–1207.
- Hibble, S. J., Feaviour, M. R. & Almond, M. J. (2001). J. Chem. Soc. Dalton Trans. pp. 935–940.
- Junk, P. C. & Atwood, J. L. (1998). J. Organomet. Chem. 565, 179-186.
- Kepert, C. J., Kurmoo, M., Truter, M. R. & Day, P. (1997). J. Chem. Soc. Dalton Trans. pp. 607–613.
- Müller, A., Diemann, E., Krickemeyer, E., Walberg, H.-J., Bögge, H. & Armatage, A. (1993). Eur. J. Solid State Inorg. Chem. 30, 565–572.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sergienko, V. S., Ilyukhin, A. B., Luzikova, A. V. & Porai-Koshits, M. A. (1991). Koord. Khim. 17, 1489–1496.
- Sergienko, V. S., Minacheva, L. Kh., Ashurova, N. Kh., Porai-Koshits, M. A., Yakubov, K. G. & Sakharova, V. G. (1991). *Zh. Neorg. Khim.* 36, 381–392.
- Shape Software (1998). ATOMS for Windows. Version 4. Shape Software, 521 Hidden Valley Rd, Kingsport, TN 37663, USA.
- Watkin, D. J., Prout, C. K. Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
- Weber, Th., Muijsers, J. C. & Niemantsverdriet, J. W. (1995). J. Phys. Chem. 99, 9194–9200.